| tags: [ Genomic Data Gaston ] categories: [Coding Experiments ]

Trying gaston to generate genetic relationship matrix

require(gaston)

Introduction

Gaston is an R package that allows for manipulation and analysis of SNP data. For this project, it will be used to estimate heritability of the phenotypes and perform the pedigree-based linear mixed model GWAS (https://cran.r-project.org/web/packages/gaston/vignettes/gaston.pdf).

Methods and Results

1. Re-filter the SNP data.

In the previous entry, I manually subsetted data for individuals before merging the data sets such that PLINK does not have to handle duplicate samples. In summary, I removed the SNP-array data for individuals with WGS. There are still 361 individuals (73 with WGS; 288 with SNP-array).

Since GLMNet does not handle missing data, we chose to apply a missing genotyping filter of 0% missing per SNV (no missing data).

plink1.9 --bfile plink_output/merged_nies_hwefilter --mind 0.05 --geno 0 --make-bed --out merged_nies_filtered

Output:

  • 9,146,242 variants and 361 individuals loaded

  • 2 individuals removed

  • 5,236,165 variants removed

  • 359 individuals and 3,910,077 variants pass QC and filters

This data set will be entered into Gaston for generating genetic relationship matrix (GRM), estimating heritability, and performing the pedigree-based GWAS.

2. Check allele frequency distribution of this final data set

plink1.9 --bfile merged_nies_filtered -freq --out plink_output/merged_nies_final_freq
merged_nies_final_freq <- read.table('C:/Users/Martha/Documents/Honours/Project/honours.project/Data/plink_output/merged_nies_final_freq.frq', header = T)
hist(merged_nies_final_freq$MAF, main = "Allele Frequency Distributions of NIES genomic data", xlab = "Minor Allele Frequency", xlim = c(0.0, 0.5), col = "skyblue1")     

3. Perform PCA on filtered data set

plink1.9 --bfile merged_nies_filtered --pca 180 var-wts --out plink_output/merged_nies_pca

4. Load eigenvalue file

merged_nies_eigenval <- read.table('C:/Users/Martha/Documents/Honours/Project/honours.project/Data/plink_output/merged_nies_pca.eigenval', header = F)

head(merged_nies_eigenval)
##        V1
## 1 5.76593
## 2 4.66469
## 3 4.47463
## 4 4.21418
## 5 3.89408
## 6 3.59091

There are 116 PCs with eigenvalue >1.

5. Generate screeplot

barplot(merged_nies_eigenval$V1, 
        names.arg = 1:nrow(merged_nies_eigenval), 
        main = "NIES PCA Eigenvalue",
        xlab = "Principal Components",
        ylab = "Eigenvalue",
        col ="lightskyblue2")
lines(x = 1:nrow(merged_nies_eigenval), merged_nies_eigenval$V1, 
      type = "b", pch = 19, col = "red")

6. Load eigenvector files

merged_nies_eigenvec <- read.table('C:/Users/Martha/Documents/Honours/Project/honours.project/Data/plink_output/merged_nies_pca.eigenvec', header = F)

head(merged_nies_eigenvec)
##   V1     V2         V3           V4          V5           V6          V7
## 1  1 110150  0.0589467 -8.75477e-04 -0.02239540  0.011630000 -0.00446339
## 2  1 110160  0.0630933 -6.06496e-05 -0.02845090  0.000941576 -0.00266674
## 3  1 110500 -0.0590490  1.85539e-02  0.00354376 -0.018948600  0.02745420
## 4  1 110650 -0.1204940  3.44369e-02  0.00411882  0.110179000 -0.06427270
## 5  1 110820 -0.0114585  3.15638e-03 -0.00365303  0.030081900  0.01194950
## 6  1 111280  0.0676306 -2.37883e-04 -0.02430370  0.010551900 -0.01317740
##            V8          V9          V10        V11         V12         V13
## 1  0.01652320 -0.01062430  0.006164140 -0.0101151  0.01203500  0.00166448
## 2  0.02925790 -0.01885220  0.007859530 -0.0479928 -0.01318040  0.02782950
## 3  0.00658647 -0.01480050  0.010809400 -0.0980730 -0.02284710  0.04798120
## 4 -0.03866080  0.03499620 -0.006655810  0.0499171  0.00393245 -0.00698922
## 5  0.02959080  0.00938257 -0.000533828 -0.0144718  0.06723630 -0.03078730
## 6  0.03175020 -0.00755970  0.004344620 -0.0133364  0.00738583 -0.00370461
##           V14          V15         V16         V17         V18        V19
## 1  0.00126558 -0.008962510  0.00598374 -0.00137634  0.00455659  0.0184699
## 2 -0.03912530 -0.005327640 -0.00784928 -0.05500860  0.02858860  0.1129630
## 3 -0.03341740  0.000983514 -0.01496270  0.03868470 -0.00220041  0.0892056
## 4 -0.00466462  0.011230400  0.00628265 -0.05751430  0.02797210  0.0267896
## 5  0.03264530 -0.008751850  0.04248090  0.12498200  0.03559850 -0.0178627
## 6  0.00176824 -0.008924150  0.01920700 -0.01492780  0.01740460  0.0135851
##           V20         V21        V22          V23          V24         V25
## 1 -0.00171067  0.01542700 -0.0144975 -3.35676e-03  0.000728472 -0.00427197
## 2 -0.01195010 -0.12347700 -0.0130687  2.96403e-03 -0.001943390 -0.01937610
## 3  0.00936671  0.00849875  0.1345610  4.54932e-02 -0.001483280  0.04648680
## 4 -0.00419117 -0.00329635  0.0149048  4.80046e-03  0.017135400 -0.01046060
## 5 -0.05799860 -0.06769530 -0.0145805 -6.42205e-05 -0.036783300 -0.00377962
## 6  0.00434048  0.01019820 -0.0126306 -1.19097e-03 -0.002636720  0.01352270
##           V26         V27         V28         V29          V30
## 1  0.01355910  0.00804555  0.00827498 -0.00416186  0.004529590
## 2 -0.02226850 -0.01989330  0.00739973 -0.01614170 -0.036153600
## 3 -0.03884530 -0.04697480 -0.04356600  0.14768000  0.049333600
## 4 -0.01233010  0.02142380  0.01870980 -0.00694316 -0.000436555
## 5  0.00187302  0.03033550  0.06003480  0.10391700  0.004908620
## 6  0.04121570  0.00846220  0.03088760 -0.02406410  0.025757500
##            V31        V32         V33         V34         V35          V36
## 1 -4.26630e-04  0.0161607 -0.00348807 -0.00293219  0.01433580  0.000176975
## 2 -1.18131e-02 -0.0270243  0.01541240 -0.03121210 -0.01527210  0.002112730
## 3  1.26245e-01  0.2006470 -0.12380200  0.20890600  0.00767486  0.103625000
## 4 -4.67718e-02 -0.0037876  0.05177640  0.01788190  0.00682486 -0.012790600
## 5 -5.68622e-02 -0.0547498  0.03996180  0.01924570 -0.00955590  0.017652000
## 6  4.44715e-05  0.0499910 -0.04589930  0.01402660  0.02453760 -0.010332600
##           V37         V38          V39        V40         V41         V42
## 1  0.00570399  0.00962233  0.018501700 0.01473480  0.00911845 -0.02144770
## 2  0.01067520 -0.02337590  0.002260830 0.02091360 -0.00548545 -0.00328948
## 3  0.11803400 -0.06520700 -0.066523800 0.08391030 -0.02044670  0.02263410
## 4  0.08005870  0.03012560  0.000264145 0.00369207  0.00264651 -0.01811800
## 5 -0.02960330  0.01393150 -0.030356200 0.02628550  0.03752720 -0.00809427
## 6 -0.05347920  0.03476800 -0.025400200 0.03346930 -0.06301130 -0.11356900
##           V43        V44          V45         V46         V47         V48
## 1 -0.01833420  0.0298067  0.000987215 -0.00156155 -0.00687218  0.01220970
## 2 -0.01276070 -0.0194769  0.006328620 -0.00485582 -0.01490440 -0.02014150
## 3 -0.00621866  0.0763932  0.067647200 -0.06762160 -0.02094400  0.00876969
## 4 -0.02826070 -0.0346261  0.015720900  0.01145530 -0.00171528  0.04200630
## 5  0.00121108 -0.0248832  0.026977800 -0.00799401  0.01003530  0.00609704
## 6  0.00773227 -0.0154565 -0.067094000 -0.14366500 -0.60464200  0.36435100
##            V49         V50         V51         V52         V53         V54
## 1 -0.015154100 -0.01243880  0.00879049  0.00619351  0.00985860  0.01621890
## 2  0.000725686 -0.00815864 -0.01862910 -0.00714862  0.00672019 -0.00169911
## 3 -0.055554000 -0.05436950 -0.02826800 -0.02439650 -0.03975600 -0.01574240
## 4  0.004263100  0.01423810  0.01546860  0.06110500  0.10122600  0.02088090
## 5 -0.061800800  0.03318640  0.02906940 -0.04794020  0.01188930  0.02324840
## 6  0.048171800  0.29270700  0.37664500  0.20402100 -0.25426600 -0.08920100
##          V55        V56         V57        V58          V59         V60
## 1 -0.0179855  0.0100564 -0.01245030  0.0106414 -1.55285e-04  0.00499858
## 2  0.0108328  0.0339722  0.00615317 -0.0234206  4.63828e-04  0.03108680
## 3 -0.0176024 -0.0223306  0.03280030  0.0168819 -2.48811e-02  0.01848250
## 4 -0.0134469 -0.0324929  0.07524070 -0.0127306  1.29098e-01 -0.10621600
## 5  0.0293657  0.0620289 -0.04024050 -0.0154988  1.30442e-06 -0.01118860
## 6 -0.0904355  0.0176160 -0.05240700  0.0642813 -7.18852e-02 -0.19718600
##           V61         V62        V63         V64         V65         V66
## 1  0.01115510 -0.01444050  0.0115646 -0.00218601 -0.01487300 -0.00166796
## 2  0.00146458  0.05309400  0.0384528 -0.01289740 -0.01722160  0.02418550
## 3 -0.02911390 -0.01737520  0.0298157  0.00784034  0.00446593  0.02024900
## 4 -0.00276366  0.00232741 -0.0454118 -0.00186605  0.14836100  0.11193100
## 5  0.01657940  0.00989671 -0.0271948 -0.02747970 -0.06204820  0.04541640
## 6 -0.03010710  0.06071550 -0.0429288  0.02219800  0.03913570 -0.04445350
##           V67         V68         V69         V70          V71         V72
## 1 -0.00493521 -0.02549290 -0.00899416 -0.00648844 -0.007331280  0.00937977
## 2 -0.03260960 -0.06514790 -0.00273753 -0.05847170 -0.080691400  0.13095400
## 3  0.01942920 -0.03499140  0.02221300 -0.01291010  0.019114700 -0.02142200
## 4 -0.05229150 -0.16135200 -0.05094340 -0.02461980 -0.075945200  0.01380950
## 5 -0.03820280  0.03735240  0.02964820 -0.03438620 -0.000227141 -0.04695380
## 6  0.02606350 -0.00640613 -0.02302220  0.01576580 -0.017009300 -0.01841170
##           V73         V74         V75         V76         V77         V78
## 1 -0.00773726 -0.00941854 -0.01767510  0.02088780  0.00116963 -0.01536270
## 2  0.01444120  0.07994720 -0.12546200 -0.06043890  0.01040170  0.04630530
## 3 -0.02547030  0.01713160 -0.01591700 -0.02941740  0.00483561 -0.01028990
## 4  0.05526400  0.04456600  0.01673210  0.03870600  0.00384774 -0.02440060
## 5  0.07993220 -0.03294970 -0.00956522 -0.00771704  0.03801400  0.00986381
## 6  0.03772950 -0.00306976 -0.02288260 -0.03513110 -0.02391450  0.01720470
##           V79        V80         V81          V82        V83        V84
## 1 -0.00299167 -0.0194361  0.01598150  0.000864562 -0.0181468 0.00446740
## 2 -0.06368520  0.0383434 -0.03014280 -0.003438960  0.0248572 0.00400366
## 3  0.05380230 -0.0356980 -0.00223894  0.018875200 -0.0253184 0.03057380
## 4  0.07955770 -0.0800217  0.11066000  0.014719600 -0.0931714 0.06882340
## 5 -0.01660540 -0.0725649 -0.11222500  0.142319000 -0.1252370 0.15215700
## 6 -0.00946755  0.0364890 -0.00514297  0.003298680  0.0283977 0.00431752
##           V85         V86         V87         V88         V89         V90
## 1 -0.01289470  0.01142200 -0.01805600  0.00580319  0.02199500 -0.02394140
## 2  0.02700790  0.00991711 -0.04058380 -0.05023470 -0.01643940 -0.04141480
## 3 -0.01559320 -0.01851730  0.00689590  0.03833470 -0.01026490  0.02098990
## 4  0.08110020 -0.02479620 -0.04222840 -0.03727320  0.03118050 -0.02145530
## 5 -0.00629977 -0.06553180 -0.03385070  0.11505800 -0.08190610  0.08031060
## 6  0.00672799  0.02338550 -0.00948156 -0.00654986 -0.00441948  0.00590629
##           V91         V92         V93        V94         V95         V96
## 1 -0.03731440  0.00900841 -0.00561013 -0.0128886  0.05364630 -0.01498190
## 2  0.03998680  0.06964990 -0.06699350 -0.0409537 -0.04042330  0.05456320
## 3 -0.00960275 -0.02086650 -0.00407492 -0.0178235  0.01869100  0.00431680
## 4 -0.10161200 -0.05203960  0.06572370  0.0302511  0.00800936  0.00559744
## 5  0.10719400 -0.02762060 -0.15913000 -0.0480193  0.09665990 -0.00562502
## 6  0.01977220  0.01035040 -0.00844279 -0.0179225 -0.00298542 -0.00341662
##           V97         V98         V99        V100        V101        V102
## 1  0.00929608  0.01621390  0.02224820  0.03638790  0.03835890 -0.01592360
## 2  0.03247480  0.08273890 -0.03439590  0.01696910  0.05951150  0.02022830
## 3  0.01510120 -0.03038040  0.01966080 -0.00368429 -0.01601920 -0.00977669
## 4 -0.02787650 -0.02926860  0.02853930  0.00190991 -0.00168102  0.07942600
## 5  0.07583570  0.11393400  0.04187290 -0.03385090 -0.22757900 -0.01408400
## 6  0.00158611 -0.00205935 -0.00107714 -0.02480470 -0.01647210 -0.01389630
##         V103        V104        V105        V106        V107        V108
## 1 -0.0709797 -0.11571200 -0.02552060  0.14439300  0.00576447 -0.01093070
## 2  0.0430267 -0.01671450  0.00895643  0.00569741 -0.03440690  0.00269152
## 3  0.0283567 -0.00256400  0.01934860 -0.03310160  0.01250000 -0.04113450
## 4 -0.0202584  0.02736280  0.07916150  0.01777440  0.01210800 -0.01757980
## 5 -0.0825804 -0.00639613  0.13109900  0.07262150 -0.02259710  0.04625710
## 6  0.0231165 -0.00478870  0.00378914 -0.03117100  0.02707670  0.01359800
##          V109        V110        V111         V112        V113
## 1 -0.07633590 -0.04046120 -0.02575730  0.003195280  0.12367600
## 2  0.01258190 -0.06828900  0.01494880  0.046861100 -0.02160030
## 3  0.02157430  0.03129010  0.01261370 -0.000863861 -0.00709363
## 4  0.03845160  0.00551700 -0.04843010 -0.050813600 -0.02657820
## 5 -0.07421100  0.00592317  0.01995720 -0.087822300 -0.08176300
## 6  0.00432956  0.01178630  0.00217481 -0.006437040 -0.00956196
##           V114         V115        V116       V117        V118        V119
## 1  0.112338000 -0.078012900  0.15514200 -0.0367916  0.21210100 -0.21727700
## 2  0.000953629  0.105998000  0.00941520 -0.0449914  0.00549195  0.01406440
## 3 -0.001630040 -0.000874683  0.01787950  0.0193293  0.06542150 -0.02830210
## 4 -0.019458700  0.004241160 -0.05141400  0.0722224  0.04351910  0.00562061
## 5  0.042890300  0.035227500 -0.02197880 -0.0329143  0.02605530  0.02351080
## 6  0.008859760 -0.002955760  0.00512574  0.0102950 -0.01486860 -0.00461027
##          V120        V121        V122        V123         V124        V125
## 1  0.38699300 -0.04623270  0.01729270 -0.00181961  0.160022000  0.32635100
## 2  0.05920540  0.07551680 -0.04552250 -0.05265830 -0.056153100 -0.02347580
## 3  0.00466378  0.02415160  0.01026850 -0.06291170  0.001957850 -0.02927380
## 4 -0.02276570  0.03489970  0.02088480  0.01699550  0.021085300  0.03755880
## 5  0.03357260 -0.01795730  0.03429910  0.03864910 -0.023216500  0.05386200
## 6 -0.00772873 -0.00530803 -0.00443257  0.00608943 -0.000475472 -0.00690531
##           V126        V127        V128        V129        V130        V131
## 1  0.349473000 -0.07290130  0.17489100  0.11776200  0.01021720  0.01581120
## 2 -0.014398800 -0.01823590 -0.02731020  0.01270940 -0.03907020  0.00378668
## 3 -0.012727900 -0.01144760  0.01273460 -0.01542490  0.00815200  0.02661030
## 4 -0.000318816 -0.02907820 -0.01881430  0.02578490 -0.09907310 -0.00666158
## 5 -0.042775600 -0.02097760 -0.01802300 -0.01170760 -0.03107880 -0.02005210
## 6  0.004686740  0.00727006  0.00265084 -0.00370603  0.00231812  0.00359954
##          V132        V133        V134        V135        V136        V137
## 1  0.03445470 -0.17411800  0.03567230 -0.25196200 -0.18306000  0.11310900
## 2  0.00168500 -0.01863870 -0.02424360  0.03583810  0.02571650  0.07506360
## 3 -0.00345200 -0.02947180  0.01718600  0.01024490  0.03119760  0.04352050
## 4  0.00337775 -0.01300430  0.06269380  0.00318891  0.01748450 -0.00507515
## 5  0.00794688  0.04080040  0.00986181 -0.00948019  0.02548200 -0.00366914
## 6 -0.00193835  0.00960114 -0.00820553 -0.00639843  0.00235273  0.01125620
##          V138         V139        V140        V141        V142        V143
## 1  0.03018670 -0.023296400  0.04301310 -0.09480090  0.04399800  0.01639120
## 2 -0.03186400  0.021842100  0.01777500 -0.00161466  0.02455900 -0.06561430
## 3  0.01000370 -0.005190230  0.00648526  0.01388940  0.00560739 -0.01873380
## 4 -0.01108810  0.052133000  0.01069780 -0.02247100  0.00976418 -0.00158226
## 5  0.01190420  0.000184346 -0.02822690 -0.02535240  0.02159280  0.00731288
## 6  0.00714551 -0.009634980  0.00539325 -0.00484187 -0.01142750  0.00285809
##          V144         V145        V146        V147        V148
## 1 -0.08563650 -0.107228000  0.15406800 -0.03148810 -0.09216150
## 2  0.02938980 -0.058275300  0.04328980  0.04570890  0.01794260
## 3  0.04284470  0.001933080 -0.01120640  0.03008830 -0.01635970
## 4  0.01389250  0.000705828 -0.00923344 -0.04890490 -0.00401916
## 5  0.04018530 -0.027360600  0.01640270 -0.00376478  0.01771260
## 6 -0.00501583  0.003739230 -0.01460930 -0.01173710  0.00128129
##           V149        V150       V151        V152         V153        V154
## 1  9.60356e-02  0.03910820  0.0479366 -0.15232000 -0.078465500  0.00729046
## 2 -8.60984e-02 -0.14227500 -0.0435035  0.06136790  0.069668900  0.18166400
## 3 -8.60475e-03  0.01719180  0.0118971  0.04113510  0.000883443 -0.00618846
## 4 -3.47958e-03 -0.06842200 -0.0261922 -0.04561700  0.018574800  0.01371290
## 5  1.85095e-04  0.00521006  0.0121822  0.00999297  0.041675000  0.01129440
## 6  3.30225e-05 -0.01159940 -0.0033066  0.00944173  0.005998840 -0.00896851
##          V155        V156        V157        V158        V159        V160
## 1 -0.04732430  0.03523190 -0.10953700  0.07420140  0.01607450  0.01430480
## 2  0.03350730 -0.10456200 -0.05472440  0.08417950  0.12772300 -0.00416176
## 3 -0.00665522  0.03963680 -0.01317680  0.00614684  0.00882357  0.00536904
## 4 -0.05149720  0.01133530 -0.00326855 -0.03747390 -0.06011580 -0.02051250
## 5 -0.01648170  0.02918670 -0.02028460  0.02562140  0.00487212  0.00409429
## 6 -0.00582000 -0.00677328  0.00373055  0.00267339  0.00879544 -0.00642719
##         V161        V162        V163        V164        V165        V166
## 1 -0.0278015  0.00403856  0.00531826 -0.01140840  0.03367980  0.04991770
## 2  0.0184757 -0.01682160 -0.05878650  0.01725450 -0.03592310  0.11769900
## 3  0.0151284 -0.02019030  0.00334550  0.01853420 -0.00401535 -0.03339510
## 4  0.0233604  0.03862010 -0.04207160 -0.01171660 -0.00689034 -0.00143045
## 5  0.0129426 -0.02169120 -0.00321022 -0.02370330 -0.00557247  0.00265787
## 6 -0.0059354  0.00224601 -0.00152022  0.00847711  0.00870464  0.00780844
##          V167        V168         V169        V170        V171        V172
## 1 -0.01760940  0.00961379  0.001985850 -0.03372050 -0.09473020  0.00511538
## 2 -0.10830900 -0.07670010  0.040787400  0.09972870  0.03568950  0.02024080
## 3  0.00698243 -0.00112616 -0.022666200 -0.02865370 -0.00383540  0.04309770
## 4 -0.03832280  0.05278350 -0.026355400  0.01766480 -0.01785260  0.04580620
## 5  0.01482320  0.01737950 -0.011456100 -0.02243630  0.01492530  0.01728920
## 6  0.00408335  0.00174240 -0.000747272  0.00247075 -0.00631177 -0.00455355
##           V173        V174        V175       V176        V177        V178
## 1 -0.006647940 -0.06004850  0.03281990 -0.0179610 -0.04477090 -0.00910452
## 2 -0.107322000  0.11337600  0.02111610  0.1424270 -0.20204600 -0.05994550
## 3 -0.004438730  0.03167530 -0.00795701  0.0283691 -0.00558279 -0.01918230
## 4  0.038660200 -0.01903990  0.01790210  0.0377134 -0.02738700 -0.03045680
## 5  0.015132200  0.00686495 -0.01913900 -0.0208588  0.02514090  0.02141340
## 6  0.000949717  0.00238564 -0.00745173 -0.0041987 -0.00163764 -0.00188696
##          V179        V180        V181         V182
## 1 -0.01040800 -0.05245650 -0.00606280 -4.00193e-02
## 2 -0.08078110 -0.35421900 -0.29752800  1.62800e-01
## 3  0.01654460 -0.00352491  0.01111330  1.34426e-02
## 4 -0.01752540 -0.01369800 -0.00527637  7.30360e-03
## 5  0.00815394  0.00822977  0.01513980  2.45535e-05
## 6 -0.01388720 -0.00103436 -0.00288065  3.23107e-03

7. Generate PCA plots

plot(merged_nies_eigenvec$V3, merged_nies_eigenvec$V4, xlab = "PC1", ylab = "PC2", main = "PC1 vs PC2 eigenvectors") #PC1 vs PC2

plot(merged_nies_eigenvec$V4, merged_nies_eigenvec$V5, xlab = "PC2", ylab = "PC3", main = "PC2 vs PC3 eigenvectors") #PC2 vs PC3

plot(merged_nies_eigenvec$V4, merged_nies_eigenvec$V6, xlab = "PC2", ylab = "PC4", main = "PC2 vs PC4 eigenvectors") #PC2 vs PC4

plot(merged_nies_eigenvec$V5, merged_nies_eigenvec$V6, xlab = "PC3", ylab = "PC4", main = "PC3 vs PC4 eigenvectors") #PC3 vs PC4

These PCA plots have changed after excluding duplicate samples. However, there appears to be one individual that is an outlier ?

8. Load “gaston” package

require(gaston)

9. Load merged_nies_filtered files

merged_nies <- read.bed.matrix("C:/Users/Martha/Documents/Honours/Project/honours.project/Data/merged_nies/merged_nies_filtered.bed")
## Reading C:/Users/Martha/Documents/Honours/Project/honours.project/Data/merged_nies/merged_nies_filtered.fam 
## Reading C:/Users/Martha/Documents/Honours/Project/honours.project/Data/merged_nies/merged_nies_filtered.bim 
## Reading C:/Users/Martha/Documents/Honours/Project/honours.project/Data/merged_nies/merged_nies_filtered.bed 
## ped stats and snps stats have been set. 
## 'p' has been set. 
## 'mu' and 'sigma' have been set.

10. Generate genetic relationship matrix (kinship matrix/GRM)

merged_nies_GRM <- GRM(merged_nies)

head(merged_nies_GRM)
##              110150      110160       110500       110650       110820
## 110150  0.977154136  0.01831282 -0.016187528 -0.029204521  0.002743251
## 110160  0.018312816  0.90508360 -0.016804561 -0.040735368 -0.011914639
## 110500 -0.016187528 -0.01680456  0.946581721  0.004033460 -0.003755704
## 110650 -0.029204521 -0.04073537  0.004033460  0.820495605 -0.003417064
## 110820  0.002743251 -0.01191464 -0.003755704 -0.003417064  0.839923978
## 111280  0.027842626  0.01132849 -0.020756746 -0.030984566 -0.010407919
##             111280       111440       111460       111750       111770
## 110150  0.02784263 -0.014135579 -0.022691507  0.031414349  0.013674585
## 110160  0.01132849 -0.019051932 -0.033589736  0.033953477  0.012714203
## 110500 -0.02075675  0.018513432  0.025560116 -0.008117734 -0.024166144
## 110650 -0.03098457 -0.004477389  0.005999879 -0.039252020 -0.026501579
## 110820 -0.01040792 -0.010232272 -0.007388396 -0.004608844 -0.002295749
## 111280  1.65637732 -0.018072939 -0.023818713  0.021109378  0.014821051
##              111830        124230       124250        124480       124550
## 110150  0.023737585  0.0102182496 -0.001082547 -0.0117469104 -0.002446266
## 110160  0.021720216  0.0008482425 -0.006926686 -0.0123960096 -0.009739782
## 110500 -0.016962767 -0.0071935235  0.031066267 -0.0106151337 -0.005837332
## 110650 -0.044965897 -0.0058077318 -0.017021574  0.0062339129 -0.020828553
## 110820 -0.004433294 -0.0097562093  0.007771998  0.0052674725 -0.015560418
## 111280  0.028480748  0.0044461181 -0.000504423 -0.0006393922 -0.006867119
##               124670       124720      124820       125270       125580
## 110150 -0.0124035776 -0.009157396  0.02546348 -0.006834933 -0.013527735
## 110160 -0.0107643288 -0.004823131  0.02080608 -0.015239348 -0.017053200
## 110500  0.2790596187  0.002550159 -0.02099631  0.004157585  0.006791867
## 110650 -0.0007603313 -0.005740339 -0.03660205  0.005559403  0.014560117
## 110820 -0.0223483983  0.002362015 -0.00201274 -0.007243009 -0.016314125
## 111280 -0.0190399643 -0.022423225  0.01658027 -0.009700268 -0.013632444
##              136110        168180       168230       168420       168600
## 110150  0.001987464  0.0045867660 -0.042496186 -0.009503459  0.006322194
## 110160 -0.008225115 -0.0066113565 -0.049511909 -0.020469867 -0.014806999
## 110500 -0.012128055 -0.0007886803  0.010773757  0.006968840 -0.001030997
## 110650 -0.017982919  0.0197421852  0.038223945  0.023401869  0.086542249
## 110820  0.001692195 -0.0150090996  0.008901604 -0.006402422  0.007869485
## 111280 -0.005145262 -0.0095552281 -0.049306046 -0.021198148 -0.018460955
##             168830        168860       169070        169270        169600
## 110150 -0.00490006 -0.0073945024 -0.003225017 -8.599035e-05 -0.0022101775
## 110160 -0.01184687 -0.0117904553  0.194591552 -8.512650e-03  0.0008582732
## 110500 -0.02280041 -0.0004801017  0.036087561 -1.563584e-02 -0.0053465171
## 110650  0.01235818 -0.0196983702  0.016329620 -2.235137e-02 -0.0087288581
## 110820 -0.01308947 -0.0080641368 -0.017007489 -8.219382e-03 -0.0003114732
## 111280 -0.01582675 -0.0063626575 -0.013366225  2.854440e-03  0.0031396549
##              169670        201009       210660       211340       211720
## 110150 -0.028867476 -0.0002726081  0.010491225 -0.040643107  0.001369796
## 110160 -0.026446642  0.0088661592  0.016590782 -0.038642053 -0.007702074
## 110500 -0.003446528 -0.0136101209 -0.019279759  0.012841640  0.013557675
## 110650  0.016586464 -0.0198514257 -0.039162636  0.060856640 -0.005879797
## 110820 -0.023737509 -0.0044103540 -0.006886918  0.003111329 -0.000626767
## 111280 -0.024120603  0.0025950845  0.007554348 -0.040010788 -0.015391486
##             211790      211880       212771       213040       213861
## 110150  0.02239294 -0.03644340  0.008794399  0.009435582  0.017082803
## 110160  0.01553093 -0.03738015  0.001580172 -0.002599242  0.029633468
## 110500 -0.02817558  0.04790410 -0.016021295 -0.008865232 -0.025045428
## 110650 -0.03578128  0.02949908 -0.031885028 -0.029297810 -0.030718256
## 110820 -0.01016947 -0.01543801 -0.011544663 -0.012284501 -0.004465738
## 111280  0.02510495 -0.03074948  0.007675235  0.006866371  0.026959397
##               214050       216170        216171       216261       216304
## 110150 -0.0008853947 -0.005605975  0.0219278671 -0.019953026  0.028157640
## 110160  0.0059999940 -0.009745623  0.0242129564 -0.029971177  0.007903070
## 110500 -0.0070202267  0.003141627 -0.0208058357  0.007263076 -0.022362821
## 110650 -0.0043528322  0.003052105 -0.0355399027  0.033136617 -0.034360506
## 110820 -0.0018919361 -0.001355749 -0.0000247461 -0.010494978 -0.002818112
## 111280  0.0031260911 -0.021457167  0.0174404141 -0.026742734  0.007895417
##               216640       217310       217421       217790       217880
## 110150  5.236568e-03  0.009023266 -0.031749718 -0.005972371 -0.004857258
## 110160  4.671432e-03  0.013291338 -0.041328203 -0.008922082 -0.004909771
## 110500  4.953035e-03 -0.016947411 -0.001652774 -0.008230105 -0.011716916
## 110650 -1.711318e-02 -0.020227049  0.215080291 -0.003568691 -0.009131212
## 110820 -1.457300e-02  0.035751346 -0.008906226  0.026953306  0.010413027
## 111280 -1.463061e-05  0.014567787 -0.029639881 -0.008227357 -0.014561060
##              217940       218290        219960       220310       222581
## 110150  0.004873024  0.024901167  0.0028778501  0.024846423  0.016547894
## 110160 -0.001804720  0.018697014  0.0161930621  0.017071201  0.023122918
## 110500 -0.012683819 -0.018101070 -0.0099572716 -0.024856830 -0.016998379
## 110650 -0.035435554 -0.036391545 -0.0287948642 -0.042402014 -0.034396179
## 110820 -0.002972901 -0.001442909 -0.0002959906 -0.007344882 -0.007850497
## 111280 -0.005515800  0.020397859 -0.0002470634  0.007191030  0.021693908
##              225990       225991       227220      228260       229680
## 110150  0.020513484 -0.008282499 -0.018691324 -0.03256094 -0.012479805
## 110160  0.019457560 -0.012740398 -0.018516930 -0.03063870 -0.009359655
## 110500 -0.026911777 -0.011146972  0.012181596  0.04300205 -0.019367812
## 110650 -0.039646715 -0.008972252  0.008632492  0.03221169  0.008095108
## 110820  0.001774016 -0.001075909 -0.016348965 -0.00272952 -0.006396670
## 111280  0.022702584 -0.011305438 -0.022573775 -0.02954929 -0.010227753
##              230381        230831       231450       232080        232110
## 110150 -0.018678954  0.0057195770  0.027555602  0.008708715  0.0001808802
## 110160 -0.009272253  0.0015005593  0.004942669  0.013905403  0.0013487225
## 110500 -0.005172753 -0.0006733162 -0.015630236 -0.018415587 -0.0005222589
## 110650  0.004456183 -0.0217113886 -0.026734337 -0.029754933 -0.0195905995
## 110820  0.004021345 -0.0066123968 -0.013068087 -0.003776173 -0.0106671052
## 111280 -0.004394549 -0.0071336576  0.006504306  0.005605272  0.0109400535
##             233400        233710       234850       235840      236330
## 110150 -0.01500945  0.0032610996  0.040229883 -0.007771615  0.01996364
## 110160 -0.00704722 -0.0007989720  0.015277716 -0.005986007  0.01266790
## 110500  0.02915931 -0.0109573165 -0.021836365  0.008901457 -0.01275058
## 110650 -0.01378815 -0.0086039957 -0.039970130  0.006419631 -0.03857848
## 110820 -0.01154417 -0.0064206170 -0.001971403 -0.002117776 -0.00219890
## 111280 -0.01860281  0.0009253012  0.017346723 -0.003207244  0.02012951
##              243541        243990        245120      248221        250921
## 110150  0.013646623  6.750572e-03 -0.0411398485 -0.01221930 -0.0133752851
## 110160  0.003428212 -1.499212e-03 -0.0505142584 -0.01043655 -0.0139820063
## 110500 -0.007741185 -2.436519e-02  0.0183596835  0.01754560  0.0002478569
## 110650 -0.003329075 -2.095555e-02  0.0222536568  0.01324025 -0.0003475795
## 110820 -0.007834683  8.008131e-05 -0.0007923484 -0.01554932 -0.0045321477
## 111280  0.007398387  6.919370e-04 -0.0407740362 -0.01757208 -0.0127094826
##              253160      253810       255670       255711       269490
## 110150  0.002015199 -0.03942489 -0.011491930 -0.008225998  0.003955901
## 110160 -0.002196262 -0.03851222 -0.028805278 -0.008061485  0.004951866
## 110500 -0.009232221  0.02672803 -0.009225580 -0.010132298  0.011264079
## 110650 -0.013025058  0.22463602  0.120943993  0.003034854 -0.010777886
## 110820 -0.005511066  0.01155359  0.001675402 -0.014348449 -0.001513843
## 111280  0.009769648 -0.03642223 -0.024705084 -0.011214797  0.007733794
##              273431       275000       301000       301004        310050
## 110150  0.015783897  0.002144185  0.007259707 -0.012194623  0.0093998797
## 110160  0.008402528  0.006862031  0.133975968 -0.006501274  0.0006656008
## 110500 -0.018353503 -0.030738637 -0.001029940 -0.012186593 -0.0034752253
## 110650 -0.044016618 -0.023645990 -0.027847879 -0.005217326 -0.0179955252
## 110820 -0.018715426 -0.006537847 -0.011410577 -0.010885670 -0.0083674518
## 111280  0.019150572  0.007886308  0.007859673 -0.013826823  0.0044069430
##              310121       310291      310300       310480       310601
## 110150 -0.011510254  0.023289226 -0.01152961  0.001925629 -0.030272702
## 110160 -0.018016625  0.023535348 -0.01742438  0.001872363 -0.039769541
## 110500 -0.004381006 -0.023987362  0.02312184 -0.018470541  0.020504046
## 110650  0.005531087 -0.032698248  0.01323662 -0.025175530  0.032549400
## 110820 -0.003797122 -0.008435468 -0.01843896 -0.010534553 -0.008105352
## 111280 -0.013286480  0.017139466 -0.01869754  0.003606211 -0.033914890
##              310620       310711       310820       310881       310920
## 110150 -0.026482131 -0.035777707 -0.002909695  0.038828772  0.004728731
## 110160 -0.026443720 -0.040727634 -0.011784215  0.019536210  0.006392670
## 110500  0.008730807  0.019995255  0.041355170 -0.015480909 -0.009527815
## 110650  0.011508190  0.047253419 -0.005565864 -0.037440941 -0.024147542
## 110820 -0.001406232  0.007255623 -0.012972906 -0.009810018 -0.007883099
## 111280 -0.024354577 -0.037395641 -0.003795231  0.008917380 -0.004780614
##               311010       311020       311021       311070      311071
## 110150 -0.0004488228 -0.036281690  0.016723208 -0.015856761 -0.03405326
## 110160  0.0018657481 -0.038116220  0.015127477 -0.016238423 -0.03332258
## 110500 -0.0117145879  0.008657553 -0.011265211  0.001451200  0.01730744
## 110650 -0.0057144132  0.059056282 -0.028601279  0.008311351  0.02342722
## 110820 -0.0086385272  0.001910150 -0.007115107  0.003811747 -0.01197149
## 111280 -0.0012490965 -0.037220012  0.024874272 -0.011286303 -0.02605182
##              311160       311170       311280       311410       311411
## 110150 -0.008548162 -0.004024371 -0.040770587  0.017283583  0.018971642
## 110160 -0.009929011 -0.004684436 -0.042936742  0.015612772  0.029826032
## 110500  0.005431679 -0.003276734  0.014265342 -0.011544907 -0.026485115
## 110650 -0.012966480  0.006256179  0.078560852 -0.032657359 -0.042046741
## 110820 -0.004876304 -0.005297065  0.001040553 -0.007569116 -0.006719337
## 111280 -0.015410928 -0.002877224 -0.041124281  0.028001759  0.016458528
##              311660       311700      311760       312370       312371
## 110150  0.001918449 -0.012072094 -0.02132787 -0.011746987 -0.002043957
## 110160 -0.005724820 -0.004767484 -0.02910804 -0.011522131 -0.001923508
## 110500 -0.016875228  0.004868453 -0.00489327 -0.011146188 -0.020585446
## 110650  0.037524320  0.015088689  0.06817544  0.015291158 -0.004311393
## 110820 -0.003590417  0.050503690  0.01288478 -0.005002584 -0.011699427
## 111280 -0.003060391 -0.013736147 -0.03907533  0.001915174 -0.009265262
##              312481       312531       312590       312761       312800
## 110150 -0.035374369 -0.006742733  0.014396155  0.026564125 -0.012717876
## 110160 -0.037851479 -0.010745093  0.017312329  0.018904867 -0.012696266
## 110500 -0.003974936 -0.018583389 -0.013061374 -0.017041139 -0.007016187
## 110650 -0.003340627 -0.008535760 -0.041469783 -0.034506381  0.001156984
## 110820 -0.007511139 -0.016802343 -0.003129545 -0.004402094 -0.013964136
## 111280 -0.031375568 -0.012820976  0.019287558  0.020158829 -0.003719789
##             312801       312930       312960       313051       313180
## 110150 -0.01704937 -0.015662393 -0.006863845  0.017282477 -0.024489261
## 110160 -0.02898743 -0.017112987 -0.013645723  0.008672454 -0.018886197
## 110500 -0.02865896 -0.029967694 -0.032580320 -0.017593088  0.002241198
## 110650  0.20015784 -0.032483552 -0.023689350 -0.039770782  0.011638706
## 110820  0.00506494 -0.010929260 -0.008821026 -0.001512489 -0.029291349
## 111280 -0.02191354 -0.005445947 -0.007263370  0.015774140 -0.016764298
##              313181       313200       313211       313570       313651
## 110150 -0.003649736  0.016254865  0.005795633 -0.011756070 -0.006009821
## 110160 -0.015261599  0.019904597  0.001089469 -0.005490586 -0.010383910
## 110500  0.031730223 -0.022499358 -0.013615863  0.005857133 -0.005134792
## 110650 -0.001801415 -0.041028138 -0.030718571  0.005385030  0.013649656
## 110820 -0.009384481 -0.007020129 -0.008575455 -0.015562017 -0.002493209
## 111280 -0.026508063  0.018031223 -0.004295975 -0.013681164 -0.004703814
##              313840      313851        313870       314200       314201
## 110150  0.006026030  0.03071103 -0.0051883315  0.025689520  0.013247842
## 110160 -0.005814854  0.02076715 -0.0099675898  0.022340886  0.011058316
## 110500  0.005459669 -0.02188690 -0.0106730331 -0.021594705 -0.022335052
## 110650 -0.032772154 -0.04025918 -0.0262767710 -0.036958102 -0.016540999
## 110820 -0.006689305 -0.01362600 -0.0066247685  0.001802669 -0.012233677
## 111280 -0.001419083  0.02412242 -0.0001145088  0.016489871  0.001505871
##              314210       314310      314471       314910       315031
## 110150  0.004343926  0.021856498 -0.02061914  0.003394435  0.010329140
## 110160 -0.004076876  0.026449636 -0.01394252  0.012191324  0.009784768
## 110500 -0.009552351 -0.019805918 -0.01122935  0.002851960 -0.019034553
## 110650 -0.019230757 -0.039490514 -0.02323679 -0.011499329 -0.039876182
## 110820 -0.007974533 -0.004880711 -0.03124607 -0.007394049  0.019339371
## 111280  0.002985587  0.014886895 -0.01117223  0.010424880  0.012338321
##              315040       315290        315560       315780        315860
## 110150  0.019148115  0.024127329 -0.0031777371  0.018769132  0.0024504836
## 110160  0.027304487  0.021677932  0.0005635413  0.032623637  0.0108215334
## 110500 -0.019312626 -0.014729486 -0.0009730599 -0.019402070 -0.0072296979
## 110650 -0.035653312 -0.031422123 -0.0083277365 -0.033698678 -0.0255986862
## 110820 -0.006406488 -0.001716792 -0.0130567765 -0.004401762  0.0152117657
## 111280  0.017060073  0.021745220  0.0024580806  0.014728006 -0.0003319744
##              315861       315981       316131       316160       316180
## 110150  0.001550467 -0.010276123 -0.001180770 -0.004309692 -0.012878357
## 110160  0.009627724 -0.011711354 -0.001960889 -0.010781345 -0.016617985
## 110500 -0.015570508  0.006425022 -0.010905281 -0.023657754 -0.003312312
## 110650 -0.024048746 -0.020606618 -0.026248550 -0.031091286 -0.003973734
## 110820 -0.010898546  0.012329119 -0.008788867 -0.017376199  0.024950959
## 111280 -0.002140799 -0.008962578 -0.002268027 -0.010079927 -0.013821084
##             316301       316320       316400       316401       316740
## 110150 -0.03471802 -0.011138189 -0.036124974  0.013263483  0.012991325
## 110160 -0.03454446 -0.008128305 -0.033790290  0.017539363  0.007027124
## 110500  0.02840039  0.005458225  0.046828061 -0.011844751 -0.011468243
## 110650  0.04953027  0.007803757  0.029039036 -0.040606670 -0.029314267
## 110820 -0.01169714 -0.006491303 -0.006530252 -0.001912545  0.003577422
## 111280 -0.04343513 -0.010771259 -0.036581721  0.006390985  0.004736193
##               316840       316841       316870       316910       316960
## 110150 -0.0001679552 -0.011213931 -0.003070361 -0.028165976  0.003971403
## 110160 -0.0036268039 -0.008066297 -0.009446244 -0.030893659 -0.003791788
## 110500 -0.0138302539 -0.007104336  0.002460269 -0.004779220 -0.022672197
## 110650 -0.0040004905 -0.001363936  0.038417481 -0.008265771 -0.033206161
## 110820 -0.0050226711 -0.005239071  0.024176035 -0.008881848 -0.003956247
## 111280  0.0014143978  0.001932846 -0.002672698 -0.029797575  0.002642391
##              316981       317590       317611       317650       317671
## 110150  0.012877193  0.008699142  0.028463043 -0.029019659  0.023810696
## 110160  0.012942334 -0.009910821  0.013195146 -0.022543339  0.019141257
## 110500 -0.016789913 -0.007983330 -0.010659947  0.026880082 -0.034128260
## 110650 -0.029728986 -0.030126411 -0.033749122  0.022846986 -0.034264799
## 110820 -0.005640047 -0.017563958 -0.001698718  0.001792252 -0.006217434
## 111280  0.015086748  0.003391199  0.023938769 -0.018950835  0.023429027
##              317690       317710      317740       317741      317771
## 110150 -0.014258427 -0.029484285 -0.01396137  0.016806424  0.03520523
## 110160 -0.019251786 -0.035685923  0.21046843  0.024495106  0.01496493
## 110500 -0.012497863  0.006750994  0.04105210 -0.014111447 -0.01407881
## 110650  0.022583200  0.044601284  0.01088540 -0.040307462 -0.02642565
## 110820 -0.003945722  0.187876344 -0.01730612 -0.007010915 -0.01105042
## 111280 -0.010629513 -0.034862433 -0.01024141  0.017167227  0.01168970
##               317801       317830       317831       317840        317850
## 110150 -0.0002807619  0.002645010 -0.009478072 -0.006320196 -0.0016707857
## 110160 -0.0123561686  0.006150973 -0.011009895 -0.005059805 -0.0051852507
## 110500 -0.0228307806 -0.005009042 -0.017542602 -0.018419182 -0.0200972147
## 110650 -0.0264783520 -0.023488674 -0.011731102 -0.029380333 -0.0186556745
## 110820 -0.0108590992 -0.007302713 -0.013455594 -0.004312374  0.0005928245
## 111280 -0.0075706369 -0.002782034 -0.011193617 -0.008414913 -0.0104669202
##               317941       318090       318471       318480       318760
## 110150 -0.0051330281 -0.004151041 -0.021538982  0.015263312 -0.016465094
## 110160  0.0051583205 -0.010780601 -0.020725191  0.006953249 -0.018118570
## 110500 -0.0150109865 -0.018026998 -0.005278949 -0.008970985 -0.003722242
## 110650 -0.0300177950  0.036931369  0.002980009 -0.007572583 -0.015090344
## 110820 -0.0110482620  0.005305235 -0.027937103 -0.007215843 -0.002543078
## 111280  0.0004048626 -0.009927765 -0.023057904  0.012042039 -0.023577740
##               318770      318960       318961      319011        319271
## 110150  0.0027443226 -0.02879228  0.029670728  0.01258039  0.0248154439
## 110160 -0.0037294351 -0.03252907  0.024885258  0.01241422  0.0279402975
## 110500 -0.0143041061  0.03820885 -0.012280780 -0.01829016 -0.0179606713
## 110650 -0.0267332662  0.04575127 -0.023787493 -0.02287603 -0.0321614891
## 110820 -0.0003065505  0.00355170 -0.003452687 -0.01157632 -0.0005917076
## 111280  0.0056140567 -0.03021713  0.029017558  0.01966848  0.0172374677
##              319280       319420       319641       319731        319970
## 110150  0.021419778 -0.000912161  0.015727647 -0.013595892 -0.0188163277
## 110160  0.224907726  0.009088274  0.009978061  0.001282205 -0.0117479526
## 110500 -0.020559413 -0.025661429 -0.030899039 -0.018648991  0.0060773306
## 110650 -0.034146879 -0.033503611 -0.036674965  0.017649494 -0.0014193926
## 110820 -0.005877325 -0.010706675  0.025747323  0.006021283 -0.0004343828
## 111280  0.017876649 -0.001626244  0.013514858 -0.005451874 -0.0227483176
##             320320      320321       320350       320450      320470
## 110150 -0.02644334  0.02188996 -0.006842237 -0.028650964 -0.01152609
## 110160 -0.03056676  0.01957291 -0.005156421 -0.028216671 -0.01006051
## 110500  0.01201253 -0.01699855 -0.009189040 -0.006802545 -0.00724395
## 110650  0.04117886 -0.03342690 -0.003900878 -0.010241332 -0.02742362
## 110820  0.19259201 -0.00841077  0.099883072 -0.024907617 -0.02016174
## 111280 -0.03127697  0.01981125 -0.004454517 -0.028598972 -0.01216209
##              320490       320511       320620        321130       323200
## 110150  0.008040952 -0.005709734 -0.008385949 -0.0102435919  0.018788882
## 110160  0.002051670 -0.001955433 -0.002621945  0.0024436289  0.006916703
## 110500 -0.009361488 -0.021926109 -0.011478001 -0.0241345447 -0.009847967
## 110650 -0.029113296  0.016049240  0.008439525  0.0000154114 -0.032771952
## 110820 -0.016648196 -0.001545688  0.008232547 -0.0019758982 -0.018874155
## 111280 -0.001227903 -0.007557079  0.008249561 -0.0134170232 -0.004278639
##               324590       327190       328580       328820       328980
## 110150 -0.0046311263 -0.013300397 -0.008890530  0.010995117 -0.008975437
## 110160 -0.0043458440 -0.007600865 -0.014492292  0.009283028 -0.012664286
## 110500 -0.0117761521 -0.015769543 -0.006061504 -0.009427273  0.003413530
## 110650 -0.0166577641 -0.002396582  0.018208899 -0.016048877  0.012680818
## 110820 -0.0098714391 -0.007304349  0.002060450 -0.006769442 -0.018940967
## 111280 -0.0006336385 -0.012877380 -0.009969623 -0.002034901 -0.009781812
##             329180       329210      329350       329480       330050
## 110150  0.01215314 -0.006640227 -0.01722061 -0.007922916 -0.039329782
## 110160  0.01655049 -0.017976524 -0.01307345 -0.016433591 -0.041150887
## 110500 -0.01270023  0.022736004 -0.01190519 -0.005305880  0.013187832
## 110650 -0.03568748  0.009203300 -0.02119551 -0.012150945  0.046968788
## 110820 -0.01207796  0.090187304 -0.03177970  0.003754491 -0.008522034
## 111280  0.01974176 -0.012064653 -0.01378591 -0.016490277 -0.040078674
##              330200       331100       332031       333130       333760
## 110150 -0.001401477 -0.010369139 -0.012864829  0.015093221  0.011897648
## 110160  0.007755280 -0.001591086 -0.017149262  0.004876599  0.007219680
## 110500 -0.020155523 -0.021608338  0.420908689 -0.031816013 -0.026455732
## 110650 -0.035256512 -0.019416289  0.004808119 -0.030070974 -0.030725999
## 110820 -0.012890988 -0.013995240 -0.006466585 -0.011420838 -0.012939699
## 111280  0.004534322 -0.006254544 -0.013484454  0.009516103  0.008456595
##              333820       334550       335330        336390       336641
## 110150 -0.005223880  0.011392138 -0.007849352 -0.0009171631  0.011071037
## 110160 -0.006770591  0.003100227 -0.010078378 -0.0069632120 -0.003319771
## 110500  0.013671803 -0.026114644  0.010769980 -0.0229002535 -0.019283056
## 110650 -0.007573698 -0.027112110 -0.005854039 -0.0286663435 -0.029103961
## 110820 -0.012582725  0.002406086  0.086943656  0.0048766616 -0.003999171
## 111280 -0.007189594  0.001327549 -0.006380373 -0.0013148147  0.004592466
##               337060       337200      337690      338630       344050
## 110150  0.0018557680  0.006222253  0.01757523  0.02312485 -0.008427780
## 110160  0.0003748410  0.003686385  0.01753478  0.01027200 -0.005046267
## 110500 -0.0222025942 -0.005465199 -0.01397760 -0.02567074 -0.003780773
## 110650 -0.0300394092 -0.015986344 -0.03704123 -0.03183515 -0.013161696
## 110820 -0.0077543133 -0.006334406 -0.01194996 -0.01394022  0.005953655
## 111280  0.0008494736 -0.005486187  0.02248118  0.02114233 -0.014288496
##               344870       345020       345601       356930        358480
## 110150 -0.0174501743  0.010130396  0.005178113  0.001434402 -0.0108409049
## 110160 -0.0199024752  0.006291443  0.008156545  0.011313475 -0.0120288413
## 110500 -0.0247694030 -0.018735789 -0.025566947 -0.009822182  0.0134428916
## 110650  0.0088903746 -0.014085494 -0.035441469 -0.023416888  0.0008787725
## 110820  0.0002250192 -0.005878642 -0.002154367  0.000613243  0.0009792170
## 111280 -0.0082589947  0.009558402  0.011541084  0.002038875 -0.0104773343
##              358630        362060       362911       363990      364020
## 110150  0.017201427  0.0052868086 -0.035610277  0.021484762 -0.01024356
## 110160  0.013637658 -0.0007593153 -0.035717856  0.020375447 -0.01598345
## 110500 -0.001833398 -0.0148594165  0.006505366 -0.021159939 -0.02215225
## 110650 -0.004888085  0.0382927358  0.418670654 -0.030564135 -0.02395198
## 110820 -0.007129896  0.0098348493  0.011340550 -0.001638521 -0.01149406
## 111280  0.008856833 -0.0072384896 -0.034962498  0.028149527 -0.01010536
##              368910       375490        375731        382610        387110
## 110150  0.003001598  0.009891159 -0.0024579242  0.0085348152  0.0024341659
## 110160 -0.006807907  0.011510331 -0.0109841153 -0.0136053832  0.0108031379
## 110500 -0.021797163 -0.009960479 -0.0123603670  0.0337448716 -0.0066665839
## 110650 -0.035240281 -0.004391257  0.0766502321 -0.0007521686 -0.0256742500
## 110820 -0.015606664 -0.006663109 -0.0071064411  0.0196413696  0.0151865222
## 111280 -0.002805588  0.014444930  0.0001177236 -0.0036364438 -0.0003869878
##              387111       388290       400011      400013      400024
## 110150  0.000503453 -0.013323876 -0.004781612 -0.02722096 -0.04535324
## 110160 -0.010753690 -0.017595327 -0.008185297 -0.03089093 -0.04726985
## 110500  0.022785977 -0.003036848 -0.002011567  0.01822058 -0.00304533
## 110650  0.002844240 -0.003259023 -0.013054426  0.03452430  0.03330520
## 110820 -0.007690518 -0.010639320 -0.007419274 -0.02202391  0.00627470
## 111280 -0.001336734 -0.020941302  0.001511849 -0.02767942 -0.04265352
##              400038       400042       400045       400055       400070
## 110150  0.007222762 -0.008571097  0.008560102 -0.021030238 -0.006820523
## 110160  0.007355900 -0.007871738  0.001959099 -0.013451941 -0.012628671
## 110500 -0.026291071 -0.004982373 -0.008262353 -0.013560152 -0.026849609
## 110650 -0.028531320 -0.009137030 -0.010798948  0.012583951 -0.023030510
## 110820 -0.006115662  0.030563092  0.001568486 -0.006271585 -0.015812287
## 111280  0.003210449 -0.002674333  0.010491873 -0.015670737 -0.011824616
##              400072       400073       400074       400083      400093
## 110150  0.001929712 -0.017019454 -0.006227623  0.002985555 -0.01043670
## 110160  0.003954806 -0.011410010 -0.010297085  0.012958582 -0.02239379
## 110500  0.004943134  0.004685392 -0.019048804 -0.004006009  0.01523727
## 110650 -0.003655827  0.012331870 -0.032459337 -0.026604623 -0.01228978
## 110820  0.004298862 -0.009793146 -0.008795418 -0.013289045  0.01283506
## 111280  0.016018389 -0.015017815 -0.009844647  0.002912495 -0.02297239
##              400096       400101      400104       400107       400157
## 110150 -0.037007555  0.005672394 -0.03365623 -0.045048341 -0.001502545
## 110160 -0.041034427  0.104205362 -0.04529474 -0.047732387 -0.008613947
## 110500  0.018203603  0.008236861  0.07526571  0.022328159  0.007581268
## 110650  0.059346668 -0.023436386  0.01780559  0.052482147  0.021689292
## 110820 -0.004180408 -0.011686598 -0.01106482  0.005161539 -0.016109549
## 111280 -0.041217357  0.001434839 -0.04504948 -0.044452794 -0.020656940
##              400162       400165       400182       400187        400194
## 110150 -0.030462630  0.005456207  0.015163771  0.017833309  0.0104833767
## 110160 -0.036264639  0.005607688  0.019393114  0.011708865  0.0154677015
## 110500  0.413798273 -0.014326419 -0.029741708 -0.011750977 -0.0104478858
## 110650  0.014198727 -0.021938842 -0.032665960 -0.028116096 -0.0126824966
## 110820 -0.007186675 -0.004408717  0.005237865 -0.007302563 -0.0009511409
## 111280 -0.031684574  0.007686249  0.023459746  0.016392006  0.0092472611
##               400208        400211        400218        400221
## 110150 -0.0145363361  0.0024447213 -0.0008648576 -2.083034e-05
## 110160 -0.0244096890 -0.0005776382 -0.0104938578 -2.890556e-03
## 110500 -0.0006057158 -0.0086456193 -0.0016437611 -4.648621e-03
## 110650 -0.0073011899 -0.0268671792 -0.0078488961  8.126539e-03
## 110820 -0.0058174436 -0.0195129272 -0.0166624337 -8.521337e-03
## 111280 -0.0171468891  0.0012964691 -0.0172431637 -5.157812e-03
##              400226       400232       400235      400263       400265
## 110150 -0.026896408 -0.012800300 -0.014274563  0.02084746  0.017404217
## 110160 -0.030562449 -0.019235564 -0.015951784  0.01581776  0.014651100
## 110500  0.004582310 -0.012867189 -0.008752250 -0.01869646 -0.008921656
## 110650  0.416481018 -0.014637437  0.005708026 -0.03143923 -0.020820912
## 110820 -0.007306988 -0.003877003 -0.004025829 -0.01111176  0.002853333
## 111280 -0.029002391 -0.002253960 -0.006458372  0.01746867  0.011827257
##              400301       400304       400305       400310      400311
## 110150  0.005864988 -0.004268778  0.000637251  0.003203502 -0.01884054
## 110160 -0.008191202 -0.007495108 -0.008687112  0.011426181 -0.01594501
## 110500 -0.009697266 -0.009593454 -0.018975414 -0.013463224 -0.00357970
## 110650 -0.020172909 -0.028233759  0.077286758 -0.017309362 -0.01549350
## 110820 -0.007526862 -0.006215414 -0.002804419 -0.019221695 -0.01577309
## 111280 -0.010168832  0.001694485 -0.002593615  0.006479689 -0.01765151
##             400315       400322       400324        400336        400340
## 110150 -0.01737943 -0.003983923  0.001888237  0.0002690845  0.0048396215
## 110160 -0.01507504  0.004873227  0.015597518 -0.0035032462  0.0043831542
## 110500  0.01079513 -0.017622136 -0.014929288 -0.0056903190  0.0002282139
## 110650 -0.01539081  0.005874425 -0.037018925 -0.0244702492 -0.0096437987
## 110820 -0.00932296 -0.011884875 -0.008120131 -0.0099704098 -0.0102993650
## 111280 -0.02296408 -0.005074372  0.005531964  0.0028454736 -0.0010312235
##               400341      400343       400366       400370        400381
## 110150 -0.0078046201 -0.04193608 -0.047090776 -0.043904614 -0.0127153201
## 110160 -0.0119949607 -0.04527842 -0.046769775 -0.044184592 -0.0094876271
## 110500 -0.0172389150  0.01726019  0.009641899  0.014342199 -0.0018556849
## 110650  0.0968747288  0.06839117  0.020318048  0.032889884  0.0001363529
## 110820 -0.0145901050 -0.01292094 -0.031518187 -0.001175436  0.0085516013
## 111280  0.0002016774 -0.04251099 -0.047389258 -0.041775003 -0.0088160690
##              400382       400389       400397      400399        400418
## 110150 -0.011798863  0.022102417  0.008620355 -0.02143627 -0.0027128512
## 110160 -0.010818513  0.021923445 -0.002064218 -0.01657782 -0.0046787350
## 110500 -0.006488534 -0.018660087 -0.018310178  0.02316203 -0.0122655230
## 110650  0.006890677 -0.038417339 -0.012567230  0.01646453 -0.0172330886
## 110820 -0.012835039 -0.006209464  0.004421606 -0.01025132 -0.0125279063
## 111280 -0.014928722  0.025942594  0.002559633 -0.01692509 -0.0001366313
##              400419        400420       400425       400426      400447
## 110150 -0.026968684 -0.0129635185  0.001587243 -0.013183760  0.02049739
## 110160 -0.018524192 -0.0116169080  0.009150141 -0.017421760  0.01600129
## 110500  0.022140868 -0.0062372452 -0.016778039 -0.006518593 -0.03132502
## 110650  0.004517526 -0.0007177001 -0.036061801 -0.013391034 -0.04128839
## 110820 -0.008575762 -0.0005933582 -0.021792574 -0.030853171 -0.01006480
## 111280 -0.017962532 -0.0120473206  0.005534423 -0.019103713  0.01739500
##              400464       400467       400470       400475        400497
## 110150  0.003648438  0.004302291 -0.006835693 -0.001687523 -0.0051333192
## 110160  0.001517724  0.002365687 -0.011687488 -0.009642553 -0.0040900391
## 110500 -0.019322652 -0.011105701 -0.005198441 -0.006370662 -0.0107075050
## 110650 -0.036058344 -0.010198923  0.029642314 -0.012504085 -0.0002466875
## 110820 -0.012534882 -0.004981775  0.003614008 -0.008502229 -0.0114365881
## 111280  0.004867582  0.002432810 -0.007424405 -0.004565589 -0.0040651392
##              400499        400501       400516        400519       400520
## 110150  0.006101164  0.0012100593  0.006440366 -0.0288265888 -0.023093615
## 110160  0.003704871  0.0045288014  0.002979010 -0.0376164764 -0.034539517
## 110500 -0.006845940 -0.0034842975 -0.018148469  0.0021161032 -0.006459387
## 110650 -0.012847144 -0.0207045916 -0.018907335  0.1909033656  0.227794662
## 110820 -0.004056403 -0.0073642982 -0.003412971 -0.0004412049 -0.007645797
## 111280  0.016331293  0.0008018567  0.004074349 -0.0343100429 -0.024628324
##              400521       400523       400528       400529        400531
## 110150 -0.006944096 -0.002825476 -0.018136660 -0.016741784 -0.0183218569
## 110160 -0.014872005  0.009537830 -0.028203167 -0.024142964 -0.0155133400
## 110500 -0.012670211 -0.010304721  0.006937514  0.002365760 -0.0085280482
## 110650  0.007044615 -0.005054822  0.003051881  0.007467563  0.0073431190
## 110820 -0.008715013 -0.005759679 -0.016956931 -0.015237343  0.0009137709
## 111280 -0.013662207 -0.004276300 -0.028362677 -0.023104357 -0.0206884407
##             400535       400543       400547       400551       400554
## 110150  0.01110908 -0.049007084  0.013088057 -0.004252313 -0.009508532
## 110160  0.01561046 -0.052737720  0.008652860 -0.006014740 -0.001945519
## 110500 -0.01738412  0.037309546 -0.003929148 -0.004524941  0.218290418
## 110650 -0.03272026  0.047139913 -0.011789254  0.028089514 -0.006508246
## 110820 -0.01201605  0.004138079 -0.013369187 -0.006263365 -0.017846184
## 111280  0.01338544 -0.046744477  0.005356268 -0.008271879 -0.002932574
##              400558       400560      400563       400577       400580
## 110150 -0.013051883  0.007095530 -0.03267932 -0.009612076 -0.009540798
## 110160 -0.015326166  0.012431812 -0.03898779 -0.008880415 -0.013122095
## 110500 -0.004557936 -0.019875640  0.00157815 -0.017335206 -0.003454193
## 110650  0.008580420 -0.031080179 -0.01239466 -0.019503016 -0.003460341
## 110820 -0.009125213 -0.005227568 -0.01479890 -0.017699283 -0.003331317
## 111280 -0.015030791  0.007278902 -0.03541263 -0.011470785 -0.012784962
##               400582       400589        400592       400605       400616
## 110150 -0.0014990339 -0.022550823  0.0005206877  0.009193035  0.001064481
## 110160 -0.0009484687 -0.035792135 -0.0068717944  0.016610868  0.003882811
## 110500 -0.0177929197  0.003448341 -0.0113186762 -0.011229125 -0.003855756
## 110650 -0.0404364653  0.039804690 -0.0356129631 -0.011260303 -0.018480029
## 110820 -0.0183123052  0.105166122 -0.0094855987  0.004083862 -0.005672214
## 111280  0.0087207770 -0.030288350 -0.0098785395  0.004828235  0.005406797
##              400619       400620       400630       400631      400632
## 110150  0.001625150  0.004123859  0.007485576 -0.008885872 -0.02828997
## 110160  0.002046640  0.009691466  0.003212207 -0.010517584 -0.04246542
## 110500 -0.010089571  0.003641311 -0.016700331 -0.018460285  0.03305570
## 110650 -0.021817720 -0.003797512 -0.015883679 -0.026597232  0.03909460
## 110820 -0.005665558 -0.002152578 -0.009973025 -0.026231455 -0.01995771
## 111280  0.003077633  0.001203210  0.004893408 -0.016479913 -0.02981970
##             400633       400634       400635       400639       400643
## 110150 -0.01203700  0.016434312  0.017576015  0.008002961 -0.007470838
## 110160 -0.01421089  0.006191020  0.026307976  0.005251345 -0.015357000
## 110500 -0.01226675 -0.011178519 -0.024048548 -0.024319891  0.006863446
## 110650 -0.02901472 -0.024261754 -0.037608132 -0.007515993  0.014970102
## 110820 -0.02101686 -0.005441751 -0.004129181 -0.004349547  0.035351373
## 111280 -0.01662179  0.003908991  0.026018847  0.003246761 -0.008062919
##               400644       400646       400647       400648       400653
## 110150  0.0062778322  0.001945672 -0.004522003 -0.007330553 -0.003538142
## 110160 -0.0003369632 -0.008792134 -0.003126209 -0.011530126 -0.006988198
## 110500 -0.0041647982 -0.002366839 -0.021601653 -0.016891463 -0.011418667
## 110650 -0.0204556193 -0.010229664 -0.017348036  0.085038744 -0.018684193
## 110820  0.0005922223 -0.004715758 -0.011583316 -0.003167826 -0.007530089
## 111280 -0.0012462741  0.004566817 -0.003075998 -0.005670090 -0.009667150
##               400656        400660       400662        400670      400671
## 110150  0.0149010597  5.862635e-05 -0.002751291 -0.0007745834  0.00691297
## 110160  0.0159246847  6.447064e-04  0.004309817  0.0030298210  0.01146823
## 110500 -0.0085945111 -1.583024e-03 -0.017514944 -0.0152127063 -0.01056238
## 110650 -0.0153755061 -6.473558e-03 -0.003288263  0.0223996881 -0.02398438
## 110820 -0.0044816150 -1.128149e-02 -0.010221776 -0.0044238260  0.39506900
## 111280 -0.0004765095 -3.762482e-03  0.001985769  0.0098394258  0.01225407
##             400672       400677       400696        400698        400712
## 110150 -0.02362540  0.010261377  0.016303532 -0.0107958000 -0.0065261447
## 110160 -0.01667047  0.011157782  0.011281720 -0.0008539196 -0.0051663471
## 110500  0.01100512 -0.020232711 -0.020634694 -0.0231052153 -0.0047618602
## 110650  0.01652073 -0.024151677 -0.031195456 -0.0248585064  0.0135012344
## 110820  0.02697119 -0.010225830 -0.002504300 -0.0233688951 -0.0063020336
## 111280 -0.02562209  0.005404431  0.006278595  0.0073675467 -0.0009740453
##              400713        400752       400785        400792       400799
## 110150  0.010291322  0.0042664302  0.007089582 -0.0055461358 -0.009672002
## 110160  0.011119937 -0.0079546887  0.002457072 -0.0018884395 -0.016442036
## 110500 -0.024327032 -0.0134135420 -0.019570319 -0.0028980032 -0.010729714
## 110650 -0.022296758 -0.0234538056 -0.015865693  0.0024604991  0.002874127
## 110820 -0.007043783 -0.0003540265 -0.004770340  0.0005022149  0.023497609
## 111280  0.008614318 -0.0120221628  0.004849532 -0.0088143758 -0.009000867
##              400800       400801      400802       400803        400804
## 110150  0.007168773 -0.007561081  0.03359517  0.005824198  0.0008487150
## 110160  0.013332737 -0.003368088  0.01530312  0.006454158  0.0007765358
## 110500 -0.004280529 -0.023707669 -0.01967451 -0.016743584 -0.0002215243
## 110650 -0.009813254 -0.029918550 -0.01557937 -0.010939614 -0.0384615920
## 110820 -0.003211029 -0.023044450 -0.01165146 -0.010269737 -0.0173523072
## 111280  0.006056390  0.000790625  0.01608523  0.001336683  0.0010151991

11. Compute eigen decomposition

merged_nies_eiK <- eigen(merged_nies_GRM)

head(merged_nies_eiK$values)
## [1] 5.756455 4.630068 4.447051 4.199365 3.878659 3.575725

12. Deal with small negative eigenvalues

merged_nies_eiK$values[ merged_nies_eiK$values < 0] <- 0

13. Perform PCA on GRM

merged_nies_PC <- sweep(merged_nies_eiK$vectors, 2, sqrt(merged_nies_eiK$values), "*")

14. Plot PC1 vs PC2

plot(merged_nies_PC[,1], merged_nies_PC[,2], xlab = "PC1", ylab = "PC2", main = "GRM PC1 vs PC2") 

15. Plot PC1 vs PC2 and colour code by gender

plot(merged_nies_PC[,1], merged_nies_PC[,2], col = merged_nies@ped$sex, xlab = "PC1", ylab = "PC2", main = "GRM PC1 vs PC2")